Supplementary Materials

1. Supplementary method descriptions

1.1 Augmenting the structural prototypes of protein fragments with local

environment information
We consider a fragment comprising | contiguous residues as a single entity. We represent the

local geometric and environmental features of fragment a by a coding vector of 1+2| components,

C* = {CSP’CSSJCSS,Z"“’CSS,I’CSAJ’C;A,Z"“’C;A,I : (1
The first component, Cgp, encodes the structure prototype of the fragment. In this study we

consider fragments comprising 5 contiguous residues and the value of Cgp will be one of the 16

structure prototypes (protein blocks) defined based on backbone torsional angles by de Brevern et

al (de Brevern, et al., 2000; Etchebest, et al., 2005).

The next | components, {Cg,Cé ,,-.-,Cgs,} . encode the secondary structure states. For
each residue, we consider three possible secondary structure states, helix, coil and strand.
The Cgs,i encodes the secondary structure state of the ith residue of the fragment as a

three-dimensional vectors, with possible values (0,0,1), (0,1,0) and (1,0,0) for helix, coil and

strand, respectively.

The last | components of the coding vector, {C&,,,Cés,,...,Cér}, encode the solvent

accessibility, with C:A,i encoding the relative solvent accessibility of the side chain of the ith

residue of the fragment in the native protein structure, also as a three dimensional vector, the

sub-components of which taking real-number values within [0,1] computed as
SA, —SA SA, - SA
SA,

—5* SA_SA,é,a‘* SAi_SA) if SA, <SA<SA and
SA —SA, SA —SA, 2)

(5+5*M,5—5*M,0) if SA>SA.
1-SA 1-SA

0,6 —5* S+3* ) if  SA<SA,,

CgA,i,l—3 =4(0

SA is the relative solvent accessible areas of residue i within [0,1], SA;=0.09 separates the

complete buried states from the intermediately buried states, and SA;=0.36 separates the

intermediately buried states from the exposed stated. The CSAJ would be (0,0,1), (0,0.5,0.5),

(0.5,0.5,0) and (1,0,0) when SA takes values of 0, SAg, SA1, and 1, respectively.

1.2. Measuring similarity between protein fragments using the coding vectors.

Given two fragments a and b with their respective coding vectors C* and C°, we use the
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following function to score their overall similarity,
a by _ ab ab
S(C°,C) = §C§p0§‘p (WeeSgs +WspSsa) . 3)

The Kronecker ¢ function is 1 if @ and b are of the same structure prototype (PB) and 0

otherwise. Sgg and SgAb measure the similarity of the secondary structure components and

solvent accessibility components, respectively, of a and b. Here we compute them as the Pearson
correlation coefficients between the corresponding components of the coding vectors. For
example,
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Here 6:5 and (_:gs stand for averages over the three subcomponents for each position and then

over the | positions for fragments a and b, respectively. The weighting parameters Wsp and Wss in
equation (3) determine respectively the relative contributions of the secondary structure
components and solvent accessibility components (see below for how they have been determined).
1.3 Clustering protein fragments in the space of the coding vectors.

We apply the K-means algorithm(MacQueen, 1967) to cluster protein fragments in the space
spanned by their coding vectors based on the similarity measure described above. Given a set of
data points and a metric for similarity between them, the K-means algorithm partitions the set into
user-specified number of clusters, so that each cluster contains data points as similar to each other
as possible while the similarity between points in different clusters is minimized. This is achieved
through the local minimization of a pseudo energy function which depends on both the
within-cluster similarity and the between-cluster dissimilarity. There are two consequences of
practical implications for such an approach. One is that the number of clusters is an input
parameter for rather than a result of the clustering process, thus we can choose this parameter so
that certain extra properties of the clusters are optimum. The other is that the local minimization
process, usually started from random initial guesses, cannot be guaranteed to reach the global
minimum of the pseudo energy function. Heuristically the clustering can be repeated with different
initial guesses and the “best” solution is accepted.

Usually, the aggregation of clustered data points in the coding space is employed to measure
the effectiveness of clustering. Such a metric, however, do not suit our purpose, which is to bridge
the space coding structure and environmental of the fragments with the sequence space, rather
than to aggregate fragments in the coding space itself. It is thus appropriate to use the similarity of
the structurally and environmentally clustered fragments in the sequence space to select optimum
clustering solutions.

Given the size of the dataset to be partitioned into clusters, the numbers of data points
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contained in individual clusters change in inverse proportion to the total number of clusters.
Changing the number of data points in a structure cluster has dual effects on our efforts to extract
sequence preferences of its members. On one hand, a larger cluster size implies better statistics for
the sequence preferences of the members of the cluster. On the other hand, larger clusters may
also imply wider spreading of the members in both the structure and the sequence spaces and the
specificity of the extracted preferences decreases. To balance between these two effects, we define
a cluster size-independent measurement of sequence biases as criteria for selections of the
clustering parameters.

Given m fragments forming a cluster in the structure and environmental coding space, we can
compute their similarity in the sequence space. This similarity can be compared with the sequence
similarity between randomly-selected m fragments from the entire data set. The probability that
the randomly chosen fragments aggregates better in the sequence space than the clustered
fragments is used as a measure of the sequence bias of the clustered fragments. The lower this
probability, the stronger the sequence bias of the clustered fragments. As there are the same
numbers of structurally clustered and randomly chosen fragments, the size-dependence of the
computed similarity in the sequence space is compensated for. As the sequence biases at different

positions of the fragments can be very different, we measure the sequence similarity of each

position separately. Consider cluster k containing M, fragments, we use the following C,(K) to

measure the similarity of residues at position i of different members of the cluster,

m,

2 k
C(k)=—>" o(af.a) )
m, (mk - 1) Z z
a,becluster k
a<b

in which a® and a_b are the amino acid residue types at position i of fragments a and b,

respectively. The O'(af,aib) is the corresponding element in the BLOSUM90 amino acid
substitution matrix(Henikoff and Henikoff, 1996; Henikoff and Henikoff, 1992). To define the
cluster size-independent sequence bias at position i, we use

b(k) =Y 1- 0[P (c,(my) > G, (k)L

1
e(x):{ aX> pO
0,x< po

(6)

in which C,(m)is the similarity score of a randomly chosen set of m residues as measured in

equation (3), and P represents probability. Equation (6) measures effectively the number of

positions at which similar amino acid residues are significantly preferred (above the confidence
level (1-p,)x100% , where P, equal 0.1) in member fragments of cluster k. For a given
partitioning of an entire dataset of fragments into N clusters, we compute
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3" m,b(k)
k=1

otal — N

b, (7)

k=1
as a measure of the effectiveness of the partitioning for extracting sequence preferences.

As the K-means computations are expensive for larger datasets, we first used a dataset

comprising all 5-residue fragments in 72 proteins to explore different coding schemes and

similarity measures based on the b, value. These proteins have been selected randomly from a

dataset containing 482 protein chains (see below). For each explored schemes and parameters

multiple (>50) K-means runs were performed and the averaged D, . values were considered. The

ratio between the weighting factors Wss and Wsa has been systematically changed between 10:1 to

1:10, with the additional choices of 0:1 and 1:0 considered. For each chosen Wss :Wsa ratio the total

number of k-means clusters was systematically varied from 5 to 500, Comparing the resulting

D _values an approximate range for the Wss :Wsa ratio between 1:10 to 1:1 was determined.

Fixing Wsa to 1.0 and wy was systematically changed between 0.1 to 1.0 in steps of 0.1, for each

of the ratio, the dataset containing 482 proteins were clustered with varying number of k-means

clusters. Again by comparing the resulting D, values an optimum Wss :Wsa ratio and the

corresponding optimum number of clusters for each PB type determined. In Table S8 the averaged

btotal values resulted from different Wss :Wsa ratios are listed, in which Wss =0.4 with Wsa fixed at

1.0 is the optimum. Figure S1 shows as an example how the D, ., value changes with the number

of k-means clusters (with wss =0.4 and wsa fixed at 1.0) for PB type C.
1.4. Modeling the sequence preferences of clustered fragments
We can describe the sequence preferences of fragments in cluster k by the following

conditional probability, p(e,,a,...,@, |K). Given any reasonable database size, the number of

members contained the clusters would not allow for any meaningful direct estimation of this
completely jointed distribution. Thus we approximate the distribution using the single site

marginal distributions and the correlations between two sites,

I il p(a.,a. | k)
150y 0y | K) o 1 k)* o
Placeenen [l ] Lot o= (LT 10000 e i

The conditional probabilities P(¢z; |K), and p(¢;,@; |K) are estimated from the amino acid

)¢ (8)

sequences of the fragments contained in the cluster, and ¢ =0.2 for I=5. The inter-site coupling

will be used only in the local structure prediction tests. In the sequence prediction tests (see below)

we will treat the distributions at different sites as mutually independent (£ =0).

The member fragments contained in a cluster can be considered as a sample of the sequence
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distribution of all fragments in similar shape and local environments. The size of the sample
usually does not allow for accurate estimation of the probability of rare sequences even with
approximations in equation (8). We used pseudocounts to partly compensate for the effects of this
insufficient sampling,

n(o, =a)+b,,

(e = k) N, + B

©

C

in which N, is the size of the sample or the number of members in cluster k, N, (; = &) is the
actual count of residue o at position i, B;  is the total number of pseudocounts, and b, is the

number of pseudocounts for residue o at position i based on certain a prior distributions. The
following choices of B;and b, were found to perform well(Henikoff and Henikoff, 1996;
Marti-Renom, et al., 2004; Sadreyev and Grishin, 2004; Sunyaev, et al., 1999),

b,, = B,*p(cSS, SA)

10
B, =5*R (10

in which R is the total number of different residue types observed at a given position, and
p(SS,SA) is the amino acid distribution at positions with given secondary structure and solvent

accessibility state, estimated directly using the entire data set.

The two-site joint probability p(¢;, ¢ | k) in equation (8) have also been estimated using

pseudocounts, with the total number of pseudocounts B, = \/N, and the pseudocounts for residue

pair (¢, ;) proportional to the corresponding joint probability in all training fragments

belonging to the PB associated with cluster k.

1.5. Local protein structure predictions by a hidden Markov model.

The simplest scheme to predict local structures using the above model is to compare directly the
likelihoods of different structure types (equation (8)) given the sequence of the | contiguous
residues, ignoring the influences of surrounding residues and their preferred structures. In such a
model the strong correlations between the shapes of neighboring or overlapping fragments would
have been ignored. We considered several different approaches to take such correlations into
account and to generate consistent predictions for contiguous fragments. The first is a hidden
Markov model (HMM(Rabiner and Juang, 1986)) , in which the joint structural and environmental
cluster a fragment may belong to is considered as a hidden state, and the sequence of the fragment
are the observed values. The emission probabilities for different sequences are modeled by
equation (8). The distribution of the initial hidden states and the transition probabilities between
neighboring hidden states can be estimated directly from a database of training protein structures.
Given the complete sequence of a protein (the sequence of the observed states), the standard
forward-backward algorithm can be applied to compute the distribution of hidden states for any
fragment. From the distribution the probability for a fragment to be of certain structure prototype
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(protein block) can be computed. We compared different choices (from 1 to I-1 residues along the
sequence) for the frame shift between neighboring hidden states and they produced similar
prediction results. The results from a frame shift of one residue will be reported here.

1.6. Another scoring scheme for local structure prediction by sequence —structure

database matching
This scheme is based on the distribution of central fragment structure prototypes among the

N top-scoring template windows. The integrated score for structure prototype SP is given by

N, (SP
Oy -10p (SP) :L), (11)

top _total

in which N.__(SP) is the number of template windows whose central fragments are of structure

top
prototype SP among the Ntop ol tOp-scoring template windows for the given target window.

The predicted structure prototype for the target fragment would be the prototype associated with

the highest score defined in equation (11). The results are not very sensitive to the exact values of

N

1op_total DEtWeen several hundred to one or two thousand. And the reported results have been

obtained using N =1000.

top _total

1.7. Datasets, cross tests and control calculations

Both the probabilistic sequence preference models in equation (8) and the sequence-structure
database matching method for local structure prediction depend on a set of training or template
data comprised of proteins of known structures. We considered two datasets of different sizes for
training and testing the methods. The small dataset contains 482 complete, non-homologous
peptide chains (Table S1) with known structures selected by de Brevern et al
(http://condor.ebgm.jussieu.fr/~debrevern/DOWN). The proteins contained a total number of
117377 overlapping, five-residue long fragments. The large dataset comprises 1462 complete
chains (Table S2) contained in PDB-REPRDB (Noguchi and Akiyama, 2003). These 1462 proteins
are not homologous with pair-wise sequence identities <20%, chain lengths > 40, structures
determined by X-ray crystallography at resolutions < 2.0 A and with R-factors < 0.3. The total
number of fragments contained in these proteins is 375511. The secondary structure state of each
residue in both datasets has been computed using STRIDE(Frishman and Argos, 1995) and the
relative solvent accessibility computed using the Lee and Richards algorithm(Lee and Richards,
1971).

For each datasets, we performed 6-fold cross tests for both sequence preference predictions and
local structure prediction. In the tests the dataset was randomly partitioned into 6 groups of protein
chains. When chains in one group were used as test data, chains in the remaining five groups were
used not only to derive the probabilistic sequence preference models, but also to construct the
template database for sequence-structure matching. The tests covered the entire dataset after each

of the 6 groups has been used as test data in turn.

6
Supplementary



To investigate the effects of augmenting the fragment shape information by solvent
accessibilities, we performed the following control calculations on the large dataset. Probabilistic
sequence preference models have been built separately (i) without any partitioning of fragments of
each PB into clusters (i.e., one cluster for each PB type, noted as “PB only™), (ii) with partitioning
based on only the PB types and secondary structure states (Wss=1.0 and wsa=0.0 in equation (3),
noted as “PB+SS”), and (iii) with partitioning based on only the PB types and the solvent
accessibility states (Wss=0.0 and wsa=1.0 in equation (3), noted as “PB+SA”). For (i) we consider
the additional case in which only a single 5-residue long fragment is included for local structure
prediction (m=0 in equation 12, noted as “1PB only”. For control models (ii) and (iii) we partition
each PB into the same number of clusters as used for the default case (both secondary structure

and solvent accessibility states are included, noted as “PB+SS+SA” when necessary). All control

calculations have been preformed using the o, scoring scheme and the 6-fold cross test

otal
scheme described above.

2.Supplementary results and discussions

2.1. Clustering by K-means.

Number of clusters for each PB type. Figure S1 shows how the Dyt score defined in equation
(7) depends on the number of K-means clusters, using PB type c as an example. Although given
the number of clusters, there are significant variations in the bya scores generated by different
K-means runs started from different initial guesses, the overall dependence relation indicates a
discernible minimum number of clusters above which the by score no longer increases with the
number of clusters. Similar dependencies have been observed for other PB types. From these
relations an optimum number of clusters for each PB type has been determined and listed in Table
S3. In total all training fragments of different PBs form 300 clusters. While the sizes of the
clusters (the numbers of fragments contained in individual clusters) are not uniform, ranging
between a few tens to several thousands of fragments, most clusters contained one to several
hundred fragments for the small dataset. The optimum numbers of clusters for individual PB types
are obviously not proportional to the occurring frequencies of the PBs in native protein structures.
In their original work de Brevern et al have reported these frequencies (de Brevern, et al., 2000;
Etchebest, et al., 2005). Similar frequencies were observed in both datasets used in this work
(Table S3 listed for the small dataset the number of fragments belonging to different PBs).
Variations in secondary structures and in solvent accessibility within PBs and within clusters.
To some extent the number of clusters for each PB reflects the variations in the secondary
structure and solvent accessibility states of different fragments contained in the same PB. Figure
S2a compared the within-PB and within-cluster distributions of the three secondary structure
states at individual sites. Figure S2b shows similar distributions of the three solvent accessibility
states. PBs and secondary structure states are both descriptors of local shapes and thus strongly
correlated. Despite of this some of the within-cluster secondary structure distributions still deviate

significantly from the within-PB distributions. The within-PB distributions of the solvent
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accessibility state for most sites do not indicate strong preferences of any particular state, although
there are some general trends that residues contained in PBs corresponding to coil regions are
more likely to be exposed than residues in regular secondary structures. Thus fragments of similar
shapes do locate in different environments in native proteins. As expected, the within-cluster
distributions are more homogeneous: the same sites on fragments within the same cluster are more
likely to be in the same secondary structure and solvent accessibility state than sites on fragments
belonging to the same PB. It is interesting to note that that for a given site, the within-cluster
distributions of the secondary structure or environment states can be completely different from the
within-PB distributions. For example, the within PB distributions suggest that the first site of PB
type a are more likely to be exposed to solvent, while for fragments within some clusters
associated with this PB type their first sites are dominantly in buried environments.
Specificity of within-PB and within-cluster sequence preferences. Intuitively, fragments within
the same PB but located in different environment may have different sequence preferences, and
amino acid preferences learned from PBs separated into clusters should be more specific than
those learned from PBs. We calculated the respective relative entropies of the within-PB and the
within-cluster amino acid distributions with the background amino acid distribution. Larger
relative entropies imply larger deviations from the background distributions, or more specific and
strongly biased amino acid preferences. The relative entropies computed for each PB type
clustered by different criteria and the overall averaged values are listed in Table S4. For the
within-PB distributions the relative entropy averaged over all sites of all PBs is 0.0051. The
averaged relative entropy for distributions within fragments clustered by PB and the secondary
structure states is 0.0070. The value increases to 0.0102 if the fragments have been clustered by
PB and the solvent accessibility states, and 0.0105 if both secondary structure and solvent
accessibility states have been considered together with PB to cluster the fragments. The increases
in the relative entropy are distributed to almost all PB types, although not evenly. One exception is
PB type j, for which the within-PB distributions result in the largest relative entropy (0.0179),
indicating very specific sequence preferences of fragments having local shapes represented by this
PB. The relative entropies for the within-cluster distributions associated with this PB type are
slightly lower, probably because that for clusters of smaller size, the contributions of the
background distributions through pseudo counts are larger.
2.2. Comparing different control calculations for sequence design

For comparisons we report sequence design results from the control calculations. Besides
control calculations which considered PB but left out either the secondary structures (“PB+SA”)
or the solvent accessibilities (“PB+SS”’) or both (“PB only”), additional control calculations which
only considered the secondary structure and solvent accessibility of single sites either separately
(“SS” and “SA”, respectively) or jointly (“SS+SA”) without representing the containing fragments
as PBs have also been performed.

Table 1 in the main text shows that the control model “PB+SA” and the default model
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“PB+SS+SA” predict best the native residues. The averaged ratios between the predicted and
background probabilities are above 1.3. The median values of these ratios are above 1.4, or for
50% of the sites the predicted probabilities of the native residues are more than 1.4 times of the
corresponding background probabilities. These averaged and median ratios are significantly larger
than those obtained using other control models (averaged values 1.05~1.17 and median values
1.07~1.15). Probably due to information redundancy between PB types and secondary structure
states (both describe the local shape), the “PB+SS” model does not bring about as much
improvement as the “PB+SA” model over the “PB only model”. Even the “SS+SA” model
predicts better sequence preferences than the “PB+SS” model, although it is not as informative as
the “PB+SA” model.

If we consider the number of sites for which the native residues are predicted to be
significantly preferred, joint considerations of both local shape and environment outperform
models considering only the shape or environment by even larger margins. For more than 45%
(28%) of the sites the predicted probabilities by the “PB+SA” or “PB+SS+SA” model are more
than 1.5 (2.0) times of the corresponding background probabilities. Same percentages produced by
the “PB only” or “SS” or “SA” only models are significantly lower (24-38% for the 1.5
probability ratio threshold and 8-13% for the 2.0 threshold). Interestingly, when we consider
whether the native residue is predicted to be the most or among the top two or three most preferred
residues, the “PB only” model is as good as the “SS+SA” model, although the models combining
local shape represented as PB type with environment still perform the best.

2.3. Local structure predictions from sequences

Comparisons between different scoring schemes in sequence-structure database matching.

The o,

otal Scoring scheme outperforms the o _y,, scheme in terms of Qy4, although in terms

of Qs the O —top scheme produced better results (Table S5). The ©,,, scheme produced more
balanced predictions of regular and non-regular secondary structure PBs. Comparisons of the
overall SLR values for the 14 non-regular secondary structure PBs indicate that the higher Qs

rates of the o, scoring scheme are associated with over-predictions of PBs m and d which are

associated with regular secondary structures, especially for the small dataset. Thus in what follows

by the sequence-structure matching results we will refer to those obtained with the o,
scheme, although we cannot exclude that using datasets larger than those used here the o,

scheme could also produce balanced predictions and catch up with or even exceed the oy,

scheme in terms of Q4 (Table S5) shows that going for the small to the large dataset, the Q4

associated with o, increased from 24.6 to 31.0 without loss in the corresponding SLR),

Comparisons between sequence-structure database matching and the first-order HMM. In
general, the two methods produced similar predictions. The HMM however results in lower Q4

for the small dataset and both lower Q.4 and Q¢ for the larger dataset (Table S5). For most of the
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PB types the HMM model also does not perform as well as the sequence-structure database
matching method and will not be discussed further.

Comparing the sequence-structure database matching strategy with the “new sequence
family” method. We will first compare the “1PB only” and “PB only” control models with the
“new sequence family” method of de Brevern et al, as all these models derive sequence
preferences from local shapes of peptide fragments represented as PBs without considering
environments of the PBs. Hence the differences may be attributed mostly to the different
representations of sequence preferences (the “sequence family” concept is used only in the “new
sequence family” model but not in the “PB only” model) and the different prediction strategies.

The results of the “1PB only” and “PB only” control calculations are given in Table S6 and in
Table S7. Going from considering 5 residue windows each containing a single PB (the “1PB only”
model) to considering 9 residue windows each containing 5 overlapping PBs (the “PB only
model”), the Q4 increases from 32.2% for 33.9% and Q,¢ from 39.3% to 41.8%.

We applied the “new sequence family” method of de Brevern et al to each of the 482 test
proteins in the small dataset. We believe the total number of test fragments (more than one
hundred thousand) contained in this dataset is already large enough to obtain accurate estimates
for the various prediction rates (this model has been trained using a necessarily fixed training set
to achieve optimum results and dataset size dependences like that of the sequence-structure
database matching method are not expected). The prediction results are summarized as overall Q4
and Qq¢ rates in Table 2 and as SNRs and SLRs for individual PBs in Table 3. The overall Q4 and
Qi rates are 30.7% and 43.6%, respectively. Compared with the “PB only” control model (Table
S6) the Q4 is 3.2 percentage points lower but the Q¢ is 1.8 percentage points higher.

Comparing the SNRs and SLRs of the “new sequence family” method (Table 3) with those of
the “PB only” control model in (Table S7 in supplementary) indicate that for most PB types,
including a, c, e, h, i, and p, the comparison fit the third scenario defined above, i.e., the SNR and
SLR for the same PB changed in inversed directions and neither method is definitely favored.
Comparisons for PB types d and m fit the first scenario in favor of the “new sequence family”
method, in consistence with its higher Q5. Comparisons for PB types n and o fit the first scenario
in slight but definite favor of the sequence-structure database matching approach. Comparisons for
PB types f, k, 1 fit the second scenario also in slight favor of the sequence-structure database
matching approach. Interestingly, the predictions of PB types b, g, and i by the “new sequence
family” method are much more sensitive than the sequence-structure database matching approach.
Although the SLRs are in favor of the sequence-structure database matching methods, the
comparisons for these PB types fit the second scenario in favor of the “new sequence family”
method. However, for the PB types g and i, the SNRR/SLR ratios produced by the “new sequence
family” model are significantly above 1.0 (1.7 for g and 3.8 for j), indicating significant
over-predictions of these PBs. On the contrary, the sequence-structure matching approach

under-predicts these three PB types.
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We note that de Brevern et al have developed the “new sequence family” method based on a

training set containing 425 chains and a test set containing 250 chains(Etchebest, et al., 2005). For
this particular test set they obtained much higher Q4 and Q¢ rates (37.4% and 48.7%,
respectively). We have applied the sequence-structure database matching method using the same
training and test sets, the resulting Q4 and Q¢ rates are 36.1% and 46.6%, respectively, both
significantly higher than what we obtained using 6-fold cross tests on either the small or the large
dataset. This indicated that local structure prediction results obtained using the particular training
and test data of reference (Etchebest, et al., 2005) may not be generalized, probably due to
unwanted similarities between training and testing data. In fact de Brevern et al ((Etchebest, et al.,
2005) have specifically pointed out that their inclusions of data into the training and test sets were
necessarily not random, and had been adjusted so that the resulting model achieves similar
prediction performances on both sets.
Effects of including secondary structures and solvent accessibility. Further clustering of local
structures defined as PBs by the secondary structure states of individual residues improved the Q4
from 34.0% to 35.7% (Table S6). This is, however, accompanied with a decrease in Q¢ from
42.9% to 41.7%. If comparisons in terms of individual PB types are made (Table S7), only a few
PBs belong to the first ( PB e) or the second ( PBs b, ¢, and p) scenarios described earlier in
favor of the “PB+SS” model. Among them, the SNR for PB type b increased significantly. For PB
type m, the SNR decreased from 58.1% to 49.8% in the “PB+SS” model although the accuracy
rate increased from 65.9% to 69.5%. This may be the major contributor to the decrease in Qqg.
Thus augmenting the structure alphabet defined as PBs by secondary structures does not bring
about general improvements for the prediction of local structures as PBs. This is probably because
of the strong correlations between secondary structure states of individual residues and the PB
type of the containing fragments.

Including solvent accessibility states have definitively positive effects on the prediction
results. Compared with the “PB only” model, the Q4 for the “PB+SA” model increased from
34.0% to 35.2%, and Q6 from 42.9% to 45.0% (Table S6). The SLR rate for the 14 non-regular
secondary structure states also increased from 30.5% to 32.1%. When results for individual PBs
are compared (Table S7), most of them belongs to either the first (PB types c, d, e, f, 1, j, k, 1, m, o
and p) or the second (PB types a, b and n) scenarios in favor of the “PB+SA” model, remaining
results for PB types g and h belonging to the third scenario which is not in definite favor of either
model if both SNR and SLR are considered. The largest improvements in SNR are for PB types b
and d. For PB types a, i, k, n, o, p the SLR rates increase by more than 2 percentage points.
Results from the default “PB+SS+SA” model are very close to the “PB+SA” model in terms of
both the overall accuracies and performances for individual PB types, with very small increases in
Qu4, Qi6, and SLR for the non-regular secondary structures. In later discussions we will focus on
results of the “PB+SS+SA” model (the default model) unless stated otherwise.

Comparing the “PB+SS+SA” sequence-structure database matching model with the new
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sequence family method. When the results of our default model are compared with the “new
sequence family” model, Q4 increased from 30.7% to 35.6% and Q¢ from 43.6% to 45.3%
(Table 2). The SLR for the 14 non-regular secondary structure states also increased from 29.6% to
32.3%. When individual PBs are compared (Table 3), five PB types (c, d, f, i, n and o) can be
assigned to the first scenario in favor of our default model. The largest improvements are in the
SNRs for PB types ¢ (from 28.2% to 33.6%), d (from 42.7% to 48.5%) and i (from 33.5% to
41.0%) at no cost of the respective SLRs. The improvements for f and n are mainly in the SLRs
(from 31.3% to 35.3% for fand 31.0% to 35.6% for n) accompanied also by slight increases in the
respective SNRs. For six PB types (a, e, h, k, 1, p) the results can be assigned to the second
scenario also in favor of our default model. Especially for PB types e, k and p there are significant
increases in the SNRs (more than 10 percentage points) accompanied with relatively small drops
in the respective SLR rates. Result for no PB type can be assigned to the first scenario in favor of
the “new sequence family” model. However, augmenting the PB by solvent accessible states does
not improve enough the sensitivity rates obtained with the sequence-structure database matching
method for PB types b, g, and j to make them comparable to predictions made by the “new
sequence family” method. The under-predictions of these PB types remain in contrast to the
over-predictions of them by the “new sequence family” method.

2.4. Implications on local sequence to structure relations

The results reported here confirmed that there exist strong correlations between local
structure/environment and sequence, although such correlations should be understood in a
complex, probabilistic, and environment dependent multiple sequence types-to-multiple local
structure prototypes mapping sense rather than with a simple, deterministic, environment-free one
sequence type-to-one local structure type mapping picture.

The local conformation combined with the local environment put stronger constraints on the
sequence than either element alone. On average close to 20% of the native residues correspond to
residues predicted to be most preferred by the local shape and environment of the containing
fragments. And the ratio for strongly preferred (with a predicted probability 1.5 times of the
background probability) native residues is 45%.

In the other direction, protein local structures depend strongly on the local sequence. On average
45% of the five-residue fragments contained in globular proteins can be predicted from sequence
to have the most preferred local structure type among the 16 possible PB types, and such
fragments cover 75% of all residues. The ratio of fragments adopting not necessarily the most but
strongly preferred local structures are even higher, c.a. 62% and 72% respectively with local
structure types among the predicted top two and top three most preferred types.

The success rates of deriving sequences from local structures and of the reversed predictions vary
greatly among different proteins. Figures S3 and S4( in supplementary )shows the distributions of
the per-protein success rates among the 1462 proteins for the “prediction” of native sequences

from PB and environment types and for the prediction of PB types from sequences. In different
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proteins, the ratio of native residues predictable from local structures and environments varied
between a few percent to more than 30%, and the ratio of fragments with local structures uniquely
predictable from local sequences varied between 20% to 70%. Do these variations reflect different
weights of local sequence-structure dependences in the global sequence-structure relationships of
different proteins, or do they simply reflect biases in the computational models (that is, the local
sequence-structure dependences captured by the model apply better to some proteins than others)?
To explore this issue, we divided the 1462 protein chains into three groups according to the
per-protein Q¢ rates: the top 30% protein chains with the highest Q¢ rates, the bottom 30%
protein chains with the lowest Q¢ rates, and the remaining 40% protein chains with Q¢ rates in
between. The local structure prediction accuracy-Aj; relations were recomputed for each protein
group. Figure 1 shows that different protein groups generated exactly the same relation between
prediction accuracy and Aj,. This strongly suggests that the local sequence-structure relations
captured by our model apply equally to different protein groups. The protein-independence of the
prediction accuracy- Aj; relation also strongly suggests that A;; may be associated with some
physical meaning. A larger Aj, may implicate a wider “free energy gap” between the most
preferred local structure state and other possible state, thus stronger local structure preferences of
the respective sequence segment. This in turn implicates a larger probability for the segment to
adopt the preferred local structure when integrated into the native structure of a complete peptide
chain. The lower success rates for some proteins are probably due to that they contained more
local sequence segments which do not have strong preferences for unique local structures,
possibly because these proteins rely less on such preferences but more on longer range interactions
to fold into native three dimensional structures. Should this be the case, the accuracy of
deterministic, unique local structure predictions would be intrinsically limited, and predictions

ranking different local structures probabilistically would be more natural.
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3. Supplementary Tables

Table S1. PDB codes of the 482 protein chains forming the small dataset.

1531 1al12A lalx la2pA 1a2zA 1a3aA 1a3h 1a44 1a4iB l1a4uA 1a76 1a7uA 1a8e 1a8h 1a8l 1a8p laew laf7
lafwB lagjA lah7 lahc 1ai3 1ai9A 1aj8A 1lajz lako lamm lamp laocA lapyA lapyB laqOA lagb larb laru
latlA laxn layoA layx 1b00A 1blcA 1b2pA 1b4kA 1bSeA 1b5qB 1b71A 1b8aA 1b8pA 1b94A 1b9hA 1bbpA
1bd8 1bea 1bf2 1bf6B 1bfd 1bgf 1bgvA 1bhe 1bhtA 1bj7 1bjwA 1bkpB 1bkzA 1bn8A 1bolA 1bgk 1bsIB 1bsmA
1btl 1btn 1bu7A 1buoA 1bxaA 1byfB 19gsA 1byqA 1bz0A 1bzyA 1c02A 1c1fA 1cl1kA 1c2pA 1c3kA 1c3qA
1c44A 1c8KA 1c8uA 1cal lcczA 1celA 1cem lcewl lefb 1chd 1chmA 1cjcA 1ecmbA lenzA 1cozA 1ep2A 1cpn
1cq3A 1cgxA lcrzA 1cs6A 1css 1ev8 levrA 1cz1A 1czfA 1cznA 1cztA 1dObA 1d0gA 1d20A 1d2vA 1d2vC
1d3sA 1d40A 1d60A 1d8wA 1d9cA 1dbfA 1dciA 1dd3A 1ddvA 1dfx 1dgwA 1dhn 1dixA 1djOA 1dkOA 1dk8A
1dlwA 1dmhA 1dmr 1doi 1dorA 1dowA 1dozA 1dp4A 1dqeA 1dqgA 1dqiA 1dqtA 1dqzA 1dsOA 1dsbA 1dts
1dugA 1dupA IdusA 1duwA ldxeA ldxy ldysA 1dytA 1dz3A 1dzfA 1eOcA 1elSA 1el9A 1e29A 1e2uA le3aA
le3uB leSmA le6oL 1e6gM le6uA 1e87A lecsA ledg ledqA ledt 1ee8A leejA 1eg9A 1eg9B leguA 1ej2A
lejbA 1ejdA lejjA 1ekOA lekgA 1el4A 1el6A lemvB 1eo6B 1e09A 1¢09B 1eokA 1epOA 1eq6A lerzA lesgB
lesl leswA leu3A leu8A leuaA leuhA leur levxA lewOA lew4A lew6A lex2A lextA leyOA leyhA leygA
leyvB lez3A 1f00I 1f08A 1f0kA 1f2dA 1£2tB 1f2uA 1f32A 1f39A 1f5SmB 1f5vA 1fSwWA 1f6kA 1f7sA 1f8mA
119zA 1fc3A 1fc9A 1fd7D 1fgyA 1fi2A 1fit 1fj2A 1fkmA [fI2A 1flmA 1flp 1fn9A 1fnc 1fp2A 1fs7A 1ft5A 1ftrA
1fua 1fupA 1fus 1fvaB 1fzqA 1g0sB 1g12A 1g13A 1glbA 1glkA 1g291 1g3qA 1g5tA 1g6sA 1g72A 1g73A
1g73B 1g73D 1g8IA 1gakA 1gcuA 1gd0A 1gd10 1gefA 1gg6B 1ggxA lgia 1gnd 1gof 1gplA 1gpeA 1gpr 1h2rL
1h2rS lhez 1he7A 1hf8A 1hfc 1hhsA 1hruA 1hsbA 1htrB 1i0dA 1i0rB 1i39A 1i6pA liab liakA liakB liazA
licjA lido ligs lihgA lio7A ljbe 1jfrA 1jkmB 1kdj 1koe lkpf llam 1lenC 1lib 11ki 1ltsA Imba ImgtA 1mkaA
Imla Imml 1mugA 1muyA 1nah Inar InbaA InbcA Inkr Inlr Inox Inpk InseA 1nsf Insj InsyA InwpA 1nzyA
lobwA lonrA IpamA 1pbn Ipbv 1pbwA 1pdo 1phnA 1php 1pmi 1pnkB 1poa 1ppn 1pprM 1prn 1puc 1pud 1qazA
1qb8A 1qccA 1qcxA 1qd9A 1qgiA 1gh4A 1gh5A 1ghgA 1qghvA 1qi7A 1qjdA 1gk8A 1gksA 1qnrA IqnxA 1qqjA
1gsaA 1gstA 1qtoA 1qtsA 1qulF IregX 1rhs 1rl6A 1rmg 1rom 1rpjA 1rro IsacA 1seiA 1sftA 1skf 1sll 1smlA
Isra 1srvA 1stmA Isur 1svb 1svy 1tca 1tf4A 1tfe 1thfD 1thm 1thv 1tib 1tkiA 1tI2A 1tpfA 1trkA 1ttqB ludh luok
luroA 1vcaA 1vfrA 1vid 1vls 1vpnB 1vsd 1vsrA 1wab 1wdcC 1wgtA 1whi 1xer 1xgsA 1xib 1xnb 1xsoA 1xwl
lyacA lyge 1zin 1zpdA 256bA 2abh 2abk 2baa 2bbkH 2bbkL 2cba 2cpl 2¢ctb 2e2¢ 2end 2fcbA 2gdm 2hrvA 2hvm
2i1b 2lisA 2mem 2mnr 2nacA 2pgd 2pia 2pii 2plc 2por 2pth 2rn2 2scpA 2sil 2spcA 2tgi 2tIxA 2tnfA 3chy 3cyr
3daaA 3grs 3hsc 31zm 3mbp 3pah 3pte 3sdhA 3stdA 3thiA 3vub 3wrp 4fgf 4pgaA 4uagA 5nll 7nn9
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Table S2. PDB codes of the 1462 protein chains forming the large dataset.

1531 1al12A laliA lalx 1a34A la3aA 1a4iB labm 1a73A 1a76 1a8d 1a8l1 1a8s ladeA laf7 lagi 1ah7 1aj2 lajsA
1ak0 lako lal3 lamm lamx laocA lapyB larb 1b0yA 1b2pA 1b3aA 1b5pA 1b5gB 1b80A 1b94A 1b9hA 1bd0OA
1bea 1behA 1bf2 1bgf 1bgvA 1bhe 1bif 1bm9A 1bn6A 1bn8A 1brfA 1bsIB 1byrA 1c02A 1cOpA 1c1dA IclkA
lclyB 1¢30B 1¢39A 1¢52 1c5kA 1c7cA 1c7nA 1¢7sA 1c8kA 1c8uA 1c96A 1c90A 1cc8A lecewB lcezA ledcA
lcdy lcfb Ichd 1chmA 1cjcA 1cl8A 1embA 1ecmlA lcpn 1cq3A 1egxA lcruB 1cs6A 1csh lesn 1cuoA 1cv8
levrA 1cz9A lczfA lczpA lczqA 1cztA 1d02B 1dOcA 1d0gA 1d20A 1d2vA 1d2zD 1d40A 1d4tA 1d9cA 1dad
1dbfA 1dciA 1dd3A 1dgwA 1djOA 1dkOA 1dk8A 1dljA 1dmhA 1dmr 1dozA 1dp4A 1dpgA 1dqaA 1dqgA 1dqzA
1ds1A 1dvoA 1dzfA 1dzkA 1e19A 1e29A 1e2wA 1e3uB 1e59A 1eaoA 1eb6A lectB ledg ledt 1ee8A leejA
leerB leexA leexB leg3A 1ekjG 1el5A 1el6A lelkA 1eokA lepfB lesSA lesgB lesjA leu3A leuvA levhA
lewOA lew4A lex2A lex7A lexrA lextA ley4A leyqA lezgA lezjA lezwA 1f08A 1fOkA 1flmA 1fluA 1f20A
124A 1f2dA 1£2tB 1f2uA 1f39B 1f3uA 1f46B 1f5SmB 1f60B 1{74A 1f86A 1fbgB 1fc9A 1fczA 1fil 1fiuA 1fkSA
1fI0A 1f12A 1flmA 1fn9A 1fnf 1{p2A 1fp3A 11r2B 1fs7A 1fsoA 1ft5A 1ftrA 1furA 1fxIA 1fxoB 1fy7A 1g0sB
1g12A 1gltA 1g2qA 1g38A 1g5tA 1g61A 1g66A 1g6gA 1g6sA 1g6xA 1g73A 1g85A 1g8aA 1g8eA 1g8kA
1g8kB 1g8IA 1g97A 1g9gA 1g9zA 1ga6A 1gakA 1gk2A 1gk9A 1gl4A 1glg 1gmuC 1gnlA 1gnuA 1gnyA 1gof
1gotB 1gp0A 1gpeA 1gpiA 1gpr 1gpuA 1gq8A 1gqiA 1gqnA 1gqvA 1gqyB 1gs5A 1gs9A 1gsa 1gtzA 1gu2A
1gu7A 1gudA 1guiA 1gugA 1gv4A 1gvp 1gwmA 1gwyA 1gx0A 1gxjB 1gxmB 1gxqA 1gxuA 1gxyA 1gy6A
1hOaA 1h16A 1hlyA 1h2cA 1h2wA 1h4gB 1h4pA 1h4yA 1h6fB 1h6hA 1h6lA 1h6tA 1h7eA 1Th7wD 1h8eH
1h8pA 1h8xA 1h9sB 1hbnB 1hbnC 1hbzA 1hd2A 1hdoA 1helA 1he7A 1hf8A 1hh8A 1hqOA 1hgkA 1hs6A
1ht6A 1htwA lhufA 1Thw5A lhyoB 1hz4A 1i0dA 1i0rB 1i1dD lilnA 1i2aA 1i39A 1i4mA 1i4uA 1i5gA 1liSrA
1i6mA 1i7nA 1i8dA 1i80A 1i9gA 1ia9B liab liakA liapA 1ib2A libyA lic6A liccA lidpA lifc lifgA 1ifrA
1ig0B 1ig3A 1ihrB 1ijhA 1ijyA 1iktA 1inlC 1i00A liolA liow lipbA 1ig4A 1iq6B liqzA lituA 1itvA 1iu8A
1iv3A 1iv9A livuA 1iwOA liwmA lixbA 1iz6C lizcA 1j09A 1j0pA 1j1bB 1j1nA 1j1tA 1j23A 1j2rA 1j30A
1j33A 1j34B 1j3wB 1j8qA 1j8uA 1j9jA 1jalA 1jakA ljayA 1jb3A 1jb7A 1jb7B ljbe 1jedA 1jdw ljetA 1jf2A
1f8A 1flA 1jfrA 1jfuB 1jfxA 1jg9A 1jhoA 1jhfA 1jhjA 1jhsA 1jilA 1jidA 1jixA 1jkeC 1jkxA 1jl11A 1jnrA 1jnrB
1josA 1jovA 1jpeA 1jr2B 1jr8A 1jsrA 1ju2A 1jubA 1juvA 1jx6A 1jyeA 1jyhA 1jyoE 1k04A 1k0iA 1kOmB
1kleA 1k2eA 1k32A 1k3yA 1k4gA 1k4iA 1k7cA 1k7hA 1k7iA 1k94A lkafD 1kblA 1kbgA lkecmA 1kdgB lkeiA
1kg2 A 1khiA 1kjIA 1k11A 1km4A TkncA 1knlA 1koe 1kolA 1kpf 1kphB 1kq3A 1kqfB 1kqfC 1kqpA 1krhA
1ks8A 1kt6A 1kuOA 1kufA 1kwgA lkyfA 1kzkB 1kzqA 112tA 113jA 116rA 116wA 116xA 117aA 118fA 1191A
119xA 1lam 11cOA 1lgpA 11hOA 11huA 11j9A 11k2A 11k2B 11kSA 11ki 11koA 111fA 1In4A 11niB 1107A 1loeB
11ovA 11plA 11q9A 11gbC 11qvB 11rSA 11riA 1IslA 1luaA 1lwbA 1lwdA 11xkA 11xzA 11y2A 1lygB 1lyvA 11zIA
Im15A Im1hA ImlnA Im1nB 1m2aB 1m2kA 1m2tB Im3kA 1m3uA 1m4iA 1m4jA Im55A ImSwA 1m70A
Im9xC 1m9zA ImbmA ImbyA Imdl Imf7A 1mgtA Imho 1mixA Imk4A ImkaA 1mkkA 1ml4A 1mla Imml
ImopA 1mqdA 1mqvA Imsc Imsk ImtpA ImuwA Imw7A 1mxrA 1n08B 1n0gA 1n0sA 1n13B 1n13E 1n2sA
1n2zA 1n5uA 1n62A 1n62B 1n67A 1n7fA 1n7sC 1n8fA 1n8kA 1na0A Inar InawA InbcA InbuA Inc5SA 1ne9A
InepA 1ng2A Ing6A 1nijA 1nkgA InkiA 1nkr InlnA Inm8A InofA 1nogA Inox Inp3A Inp6B InrzA 1nsf
InsxB IntvA IntyA 1nvOA InvmB 1InvmG InwaA 1InwzA InxjA InxmA InycA InykA InytA 1008A 100sA
100wB 1026B 104yA 105uA 106sB 107iA 107nB 1098A 109iA 10a8D 10aoC lobnA lockA locyA 1oflA lofzA
10hOB 10h4A 10i6B 10i0A 10izA 10koA 1okqA lolrA lomrA 1on3E lonrA 1000A 1ooeA 10ohA loqqA logvA
lorb lorsC lorvA losyB lotkB 1lowlA 1oxjA 10z2A 10z9A 1pljA 1p1xA 1p36A 1p4kA 1p4oB 1p6oB 1p71A
1p99A 1pbyA 1pbyB 1pcfB 1pdo 1pilA 1pii 1pjcA 1pk6A 1pkhA 1pI3A 1pm4A 1pmi 1pnf 1poSA 1poc 1pot
1ppOB 1pt7A 1pvmB 1pwbA 1pwmA 1px4A 1pxrA 1pxzA 1pzxB 1q08A 1q0nA 1q0gqA 1q0rA 1q16A 1qlcA
1q4gA 1q5zA 1q6zA 1q7fB 1q71A 1q71B 1q7zA 1q8fA 1q92A 1q98A 1gazA 1qb0A 1gb5SD 1gb7A 1qcxA 1qd1B
1qd9A 1qdvA 1qftA 1qgiA 1ghSA 1ghdA 1ghoA 1qipB 1qj8A 1qjcA 1gksA 1ql0A 1glmA 1gmgA 1gmyA 1qnrA
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1qnxA 1qoyA 1qg4A 1qqfA 1qgmA 1qrOA 1gslA 1gsaA 1qtnA 1qtwA 1qulF 1qveB 1qw9A 1qwnA 1qwzA
1gxmA 1qxrA 1qz4A 1qz9A 110VA 1r1hA 1rlmA 1r1tB 1r29A 1r3sA 1r45A 1r5zA 1r6dA 1r6jA 1r6xA 1r7jA
1r89A 1r8nA 1r9dA 1r91A 1ra0A 1ra9 1rfs 1rg8A 1ri6A 1rifA 11jdC 1rkd 1rkiA IrkuA 1rl6A 1rmg 1ro0A lroaA
IrocA 1rpOA 1rgpA 1rtqA 1rttA 1ru4A 1rv9A 1rw7A 1rwyA 1rwzA 1ry9A IryaA 1ryiA lryoA 1sOpA 1s1dA
1s3cA 1s3eB 1s55A 1s68A 1s6aA 1s7iA 1s95B 1s9rA 1sa3A IsacA lsauA 1sdwA 1se0A 1seiA 1sfOA 1sfsA
1sg4C 1sh8A 1sixA 1sjwA 1sk7A Iskz 1sqwA 1sr4A 1sr4C lsra 1su8A 1sulB lsur 1svb IsvdA 1svmC 1svpA
1svsA 1sw5A 1sxrA 1szhA 1t06A 1tObH 1tOfA 1t0iA 1tOpB 1t2dA 1t3cA 1t3mA 1t4bA 1t50A 1t61D 1t6cA
1ténA 1t7rA 1ta3A 1ta8A 1tbfA 1tca 1te5A 1ten 1tfl1A 1tfe 1tg7A 1th7A 1thzA 1ti6B 1tj1A 1jyA 1tkeA 1t12A
ItI9A ItoaA 1trOA 1tt8A 1tulA 1tu9A ItuaA 1tuhA 1tuvA 1tv4A 1tvfA 1twbA 1twiA 1tx4A 1txgA ItxIA 1ty9B
1tyjA 1tzcA 1tzvA 1tzyA 1tzyB 1tzyG 1u07A 1ullB 1uliA lulqA 1u4bA 1u55A 1uS5dA 1uShA 1uSpA luSuA
1u8vA lua4A luaiA luasA 1ub4C lucdA lucrB luebA luehB luekA 1uf5A 1ug6A lugqA lugxA 1ui0A 1uj8A
lujcA lukuA 1ulkA 1umOA lumhA lumzA lunnD lungA luok luowA luoyA lugq5A lursA 1us6B luscA
lusgA 1uslC 1uv4A 1uvjA luwcA luwfA 1luwkB luxzA luy2A luylA 1v00A 1vOeA 1v2xA 1v30A 1v33A
1v3eA 1v4pA 1v58A 1v5dA 1v5vA 1vopA 1v6sA 1v70A 1v71A 1v73A 1v74A 1v77A 1v7bA 1vT7IA 1v7zA
1v8cA 1v8eA 1v8hA 1v96B 1v9fA 1vbkA IvcaA 1vclA IvemA 1vf8A 1vfjA 1vflA 1vfgA 1vhSA 1vhh 1VI9A
1vls 1vpsB 1vsrA 1vyrA 1vziA 1wOdA 1wOnA 1wOpA 1wlhC 1w2dA 1w4sA 1w4xA 1w5fA 1w5SmA 1wSrA
1w66A 1w96C 1wab 1wbhB 1wc3A 1wckA 1wewA 1wd3A 1wdcC 1wdjA 1wdpA 1wdyA Iwer 1wf3A 1wg8A
Iwhi 1wkuB 1wkvB 1wleB 1wlgA 1wmwA 1wmxB Iwn2A 1wnS5A lwnyA 1woqA 1wp4C 1wpbA IwpnA
Iwq3A 1wqaA 1wqwB 1wrrA 1wrvB 1wteA 1wtjB 1wu6A 1wu9B 1wubA 1wurA 1wvfA 1ww7A 1wwzA
IwxcA 1wz8A 1wzcB 1x0pF 1x0tA 1xInA 1x10A 1x2jA 1x38A 1x54A 1x6iB 1x7yB 1x91A 1xawA 1xb9A
1xcl1A 1xeoA 1xffA 1xfkA 1xg4A 1xkrA 1x00A 1xovA 1xp2A 1xq6A 1xghA 1x1jB 1xs0C 1xszA 1xtaA

IxttA 1xubA 1xuuA 1xw3A I1xwwA 1xx1A 1yOpA 1ylpA 1yltA 1y2tA 1y43B ly4mA 1y50A 1y60D 1y65A
1y6iA 1y6vA 1y7bA 1y7pB ly8aA 1y93A 1y9gA 1y9wA 1y9zB lyacA lyarA 1ybOB 1yb6A 1ybqA 1ydgE
lydyA 1yfqA lygaA lyge lyiiA lyiyA 1ykdA 1lymiA lymgA lyn3A 1yn9B lynhB lynsA 1lypgB lypyA lygsA
lyqzA 1yrkA lyroB 1yt3A 1ytbA 1ytqA 1yuOA lyukB lyumA 1yvxA 1lywSA lywmA 1yxyB lyzxA 1z22wA
1z4rA 1z6nA 1z9nA 1zaiA 1zavA 1zb1A 1zc3B 1zcjA 1zd8A 1zdyA 1zhsA 1zhxA 1zi8A 1zjcA 1zjyA 1zkkA
1zkrA 1z10B 1z04B 1zodA 1zowA 1zpdA 1zpsB 1zs4C 1zsqA 1zvaA 1zvtB 1zvzA 1zx0C 1zxiC 1zxxA 1zz1A
1zzgA 2al4A 2alkA 2a21A 2a26A 2a38A 2a38B 2a50B 2a6zA 2a7bA 2a7lA 2a9dB 2ab0A 2abh 2acfD 2acvA
2ad6A 2aebA 2aenB 2aeuA 2aexA 2ag4A 2ahfA 2airB 2ajgA 2akaA 2all A 2amdA 2aorA 2apcA 2aqjA 2arl A
2arzA 2asbA 2asdA 2askA 2au3A 2au7A 2avdA 2avkA 2avwA 2awgA 2axqA 2axwA 2aydA 2az4B 2b0jA
2b0pA 2bO0tA 2b2hA 2b3fA 2b3sA 2b4hA 2b41A 2b4pB 2b5ShA 2b7kB 2b82A 2b8tA 2b97A 2ba2A 2ba9A 2bb6A
2bemA 2bfwA 2bgxA 2bibA 2bivA 2bj0A 2bjfA 2bjiA 2bjkA 2bjqA 2bkxA 2bmSA 2bmoA 2bmwA 2bnmA
2bo4A 2b09B 2bogA 2bs2B 2bs2C 2bsjA 2burB 2bwrA 2bxxA 2cOhA 2¢1dB 2c11A 2¢1vA 2c2uA 2¢31B 2¢3nA
2¢42A 2¢4nA 2c5gA 2¢6qB 2¢6zA 2¢78A 2¢TpA 2¢b5B 2cbp 2cbzA 2ccaA 2cfeA 2cihA 2cigA 2ciwA 2¢jlA
2ck3C 2cl2A 2cISA 2cmkA 2en3B 2cqsA 2cte 2cuSA 2cveA 2cwkA 2cwlA 2cx5A 2cxcA 2cxnA 2cygA 2cyjA
2cz1B 2czcA 2czvC 2d00A 2d16A 2d29A 2d39C 2d4pA 2d4xA 2d5bA 2d5wA 2d81A 2d8dB 2dbbB 2dbpA
2dc1A 2dc4A 2ddrC 2de3B 2de6B 2dekA 2dg1B 2dgkA 2djfA 2dkoB 2dm9B 2dp9A 2dpoA 2dq6A 2dr3D 2dsjA
2dstA 2e20A 2end 2erfA 2erl 2ervA 2etl A 2etxB 2eutA 2ewhA 2ex2A 2f01B 2f0cB 2f1fA 2f23A 2{2bA 2f2hA
213y A 2f4mA 2f5gA 2f5vA 2f6eA 2f6gA 2f61A 2fouA 219iD 2falB 2faoA 2fbSA 2fbaA 2fbqA 2fbyA 2fcbA
2fcwA 2fdSA 2fd6A 2fdiA 2feSA 2ffuA 2fhfA 2fhzA 2fil A 2fipA 2fj8A 2fjrA 2fkoA 2fl4A 2f1hB 2fmaA 2fmpA
2fnjA 2fp7A 2q3A 2fq6B 2fqtA 2fqxA 2fr0A 2ft0A 2fujA 2fukA 2fwfA 2fy6A 2fygA 2fzsB 2g19A 2g2sA
2g2sB 2g2uB 2g7eA 2g80B 2gagA 2gagC 2gagD 2gbaA 2gbjA 2gc4D 2gdgA 2ge7B 2ghtA 2giaB 2ginA 2gjlA
2gjuA 2gkeA 2gmsA 2gmyA 2gn4A 2gq0B 2gqtA 2grrA 2gsoA 2gtdA 2gudB 2gwmA 2gz4A 2h6fA 2h61B
2h6nB 2h88A 2h88C 2h8gA 2h8zA 2h9aB 2halA 2hbvB 2hd9A 2hekA 2hf9A 2hjvA 2hrvA 2hxmA 2hxtA 2hySA
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2hy5B 2i3gA 2i47A 2i49A 2i41B 2i53A 2i56C 2i74B 2iavA 2ic7A 2iccA 2icyB 2if6B 2iimA 2ijgA 2incB 2iprA

2iul A 2iu5SA 2iuhA 2ivfA 2ivfB 2iwaA 2ixsA 2izxB 2j1nA 2j27A 2j2jA 2j45B 2j6aA 2jbaA 2kauC 2kinA 2kinB
2lisA 2mcem 2nacA 2nllB 2nnuA 2nqoC 2nqoD 2nvhA 2nw8A 2nx4A 2nxeA 203tA 204vA 206dA 206sA 2081A
2pgd 2pia 2por 2pspA 2ptd 2pth 2sak 2spcA 2sqcA 2tgi 2tpsB 2wea 3ezmA 3grs 3prn 3pviA 3sil 3tmkA 3tss 41zt
4ubpA 4ubpB 7ahIB 7fd1A 8a3hA
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Table S3. Number of clusters for each PB and the number of fragments of each PB type in the

dataset containing 482 protein chains.

PB a b c d e £ g h i i k 1 m n N p total
Number
36 14 24 52 32 22 11 12 25 8 14 12 13 8 5 12 300
of clusters
Number
of 4544 | 5189 | 9501 | 22349 | 2893 | 7885 | 1347 | 2808 | 2154 | 982 | 6391 | 6345 | 35204 | 2401 | 3264 | 4111 | 117,377
Fragments
18

Supplementary




Table S4. Relative entropies or the Kullback-Leibler divergences of the within-PB and
within-cluster amino acid distributions relative to the background distribution. Fragments
contained in each PB are either not partitioned further (within PB) or have been clustered by
considering the secondary structure states (PB+SS), or the solvent accessibility states (PB+SA), or
both (PB+SS+SA).

PB type Within PB PB+SS PB+SA PB+SS+SA
a 0.0132 0.0143 0.0148 0.0153
b 0.0027 0.0062 0.0073 0.0076
c 0.0032 0.0064 0.0088 0.0088
d 0.0021 0.0054 0.0088 0.0093
e 0.0122 0.0129 0.0129 0.0143
f 0.0045 0.0072 0.0091 0.0091
g 0.0087 0.0082 0.0106 0.0104
h 0.0123 0.0124 0.0136 0.0141
i 0.0136 0.0134 0.0131 0.0139
] 0.0179 0.0152 0.0154 0.0160
k 0.0070 0.0087 0.0107 0.0109
1 0.0058 0.0076 0.0099 0.0101
m 0.0026 0.0038 0.0095 0.0096
n 0.0151 0.0161 0.0170 0.0184
0 0.0129 0.0143 0.0153 0.0157
p 0.0090 0.0105 0.0127 0.0128

averaged 0.0051 0.0070 0.0102 0.0105
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Table SS. Overall prediction rates of sequence-structure database matching using the oy,

scoring scheme and the HMM model.

sequence-structure database
_ . HMM
matching using O —top
Method
small
small 1 dataset large dataset large dataset
dataset

Qus® 24.6 (36.0) 31.0 (36.0) 31.5(29.9) 32.3(30.9)
TOP2 Q" 45.3 50.2 - -
TOP3 Q,,° 58.6 62.9 -

Q6" 46.7 48.0 43.9 447
TOP2 Q;4° 63.6 64.7 - -
TOP3 Q;4° 73.3 742 - -

* See text for definitions of Q4 and Q¢ rates. Data in parentheses correspond to selectivity rate
for the 14 non-regular secondary structure PBs. The small dataset contains 482 and the large
dataset contains 1462 selected protein chains. Results have been obtained using 6-fold cross

testing. ® TOP2 and TOP3 rates have been computed by considering any of the two or three PB

types with the highest o _,, scores as acceptable predictions.
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Table S6. Overall prediction rates of different control models in 6-fold cross tests using the large

dataset.
Accepted 1 PB only PB only PB+SS PB+SA
predictions Qi Qie Qua Q16 Qua Q16 Qs Q16
Topl 32.1(29.0) | 40.7 | 34.0(30.5) | 429 | 35.7(30.1) 41.7 | 35.2(32.1) | 45.0
Top2 50.0 57.2 51.6 59.5 52.1 58.8 52.0 61.5
Top3 61.8 67.8 63.2 69.8 63.1 69.4 63.1 71.5

“Data in parentheses are selectivity rates for the 14 non-regular secondary structure PBs

21

Supplementary




Table S7 The sensitivity rates (SNR) and the selectivity rates (SLR) of different control models

in 6-fold cross tests using the large dataset.

PB PB+SA PB+SS PB only 1PB only
SNR SLR SNR SLR SNR SLR SNR SLR
a 62.3 36.0 62.8 34.1 63.6 333 63.0 325
b 11.8 23.2 10.6 22.8 5.0 27.0 3.7 24.5
c 33.8 30.3 33.7 28.8 31.0 29.4 29.2 28.2
d 49.1 49.0 449 472 42.8 48.4 39.6 453
e 40.4 26.2 42.5 25.0 39.7 24.8 374 233
f 29.8 34.7 31.1 32.7 28.7 342 26.2 31.8
g 12.6 16.9 93 18.9 10.4 18.8 9.3 17.7
39.6 25.8 38.5 25.0 413 23.6 39.6 225
i 40.2 23.3 36.6 22.0 40.5 20.6 38.4 19.4
j 10.4 19.3 10.8 18.3 8.6 19.8 6.7 17.4
k 354 371 37.5 34.0 34.7 35.1 31.7 32.8
I 30.3 37.8 30.7 334 295 35.6 27.2 334
m 59.1 70.7 49.8 69.5 58.1 65.9 56.0 62.2
n 48.6 35.7 48.5 324 49.9 31.2 48.4 295
0 47.5 38.0 49.9 344 47.8 35.0 45.9 333
p 39.5 32.8 42.4 29.1 39.6 30.9 38.0 29.7
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Table S8. The averaged b, values at different Wss:Wsa ratios. The line corresponding to the

optimum ratio has been highlighted.

Wss Wsa btota|
0.00 1.00 0.221
0.10 1.00 0.234
0.20 1.00 0.234
0.30 1.00 0.233
0.40 1.00 0.245
0.50 1.00 0.240
0.60 1.00 0.233
0.70 1.00 0.223
0.80 1.00 0.219
0.90 1.00 0.214
1.00 1.00 0.209
2.00 1.00 0.212
3.00 1.00 0.190
4.00 1.00 0.208
5.00 1.00 0.213
6.00 1.00 0.192
7.00 1.00 0.168
8.00 1.00 0.178
9.00 1.00 0.174
10.00 1.00 0.165
1.00 0.00 0.080
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Table S9. The averaged logarithm of the probabilities of native residue types predicted using

equation (1) in the main text over the respective background probabilities computed using

different values for the parameter ¢ in the same equation. Results for € from 0.01 to 0.49 are given.

The line corresponding to the optimum of ¢ has been highlighted.

€ averaged logarithm
0.01 0.0207
0.03 0.0595
0.05 0.0948
0.07 0.1265
0.09 0.1548
0.11 0.1798
0.13 0.2015
0.15 0.2201
0.17 0.2357
0.19 0.2484
0.21 0.2584
0.23 0.2657
0.25 0.2704
0.27 0.2728
0.29 0.2730
0.31 0.2709
0.33 0.2669
0.35 0.2609
0.37 0.2531
0.39 0.2436
0.41 0.2325
0.43 0.2198
0.45 0.2057
0.47 0.1902
0.49 0.1734
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4. Supplementary Figures
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Figure S1. The by, scores (see text) versus the number of clusters in the K-means clustering of
fragments of PB type C contained in the small dataset. Each point corresponds to one K-means run

starting from a random initial guess with given number of clusters.
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Figure S2. The within-PB and within-cluster distributions of the (a) three secondary structure, and
(b) solvent accessibility states computed using the large dataset. The within-PB (open squares) and
within-cluster (dots) percentages (the y axis) of sites (the x axis) in different states are shown.
Each PB contains five sites and clusters belong to the same PB are shown with the same x

coordinates
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Figure S3. Distributions of the per-protein success rates for the 6-fold pseudo sequence design
cross test using the large dataset. Lines from left to right correspond respectively to distributions

of rates computed considering any of the one, two and three amino acid types with the highest

predicted probabilities as acceptable
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Figure S4. Distributions of the per protein success rates for the 6-fold local structure prediction
cross test using the large dataset. Q4: dotted lines, Qyq: solid lines. Lines from left to right
correspond respectively to distributions of rates computed considering any of the one, two and

three top-scoring PB types as acceptable predictions.
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